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Stochastic motion of charged particles in a magnetic field
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The collisional diffusion process is discussed in a model in which the motion of charged particles in a
magnetic field is treated as a stochastic process similar to that of Brownian particles. Collisional
diffusion coefficients are obtaiend, which are similar to those calculated through classical collisional

theory.
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Up to now, explaining anomalous transport in magnet-
ic confinement devices has been a problem. However, we
would rather review the collisional transport processes
from a different viewpoint, before discarding their contri-
butions to anomalous transport.

Physical processes associated with collision may be too
complicated to describe accurately. However, for the
case of collision diffusion when external forces are absent
except for a static magnetic field, we need not go into
such detail to determine the velocity distribution func-
tions of electrons, so the treatment will be easier than
that by solving a Fokker-Planck equation [1].

For simplicity, consider a plasma composed of elec-
trons and one single ion. We only discuss the case in
which electrons collide with ions and vice versa. Col-
lisions between electrons or ions are nelegected complete-
ly; this is regularly regarded as unimportant to collision
diffusion.

In a dense plasma, an electron will undergo a large
number of collisions (short-range Coulomb interactions)
per unit time with ions in the Debye sphere, each lasting
an extremely short time. Obviously, the total Coulomb
force acting on this electron, denoted as F(%), is ran-
dom, so we treat the motion of electrons as stochastic
processes. When the plasma is in equilibrium, we will re-
gard the motions of electrons to be the same, as a statisti-
cal average, because the velocity of an electron changes
very rapidly.

Now, let us assume that F(#) is only correlated with
itself over a intercollisional time 7., which is much short-
er than the average collisional period. The time correla-
tion function of F(?) is

Fi(0)F;(t")= A4,;6(t —¢') . (1)

Here, F; ; represents the component of Fc. Further-
more, we assume A4;; is independent in time, obviously,
A=Ay

In the direction of motion, electrons will collide with
more ions, and we make an assumption that binary col-

lision is dominant. This gives a frictional force
Fp()=— [ M,AV nv,0,d0 . @)

Here M,; is the reduced mass of the electron and ion,

V,; is their relative velocity, n; is the density of the ions,
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and o, is the Rutherford scattering cross section. Ap-
proximately, V,, =V,; integrating over the solid angle,
we obtain from Eq. (2):
Ff(t)=7/eimeve . (3)
Here vy ; is the familiar collisional frequency,
_AnZ Ze*n,InA
Y ei m 32 V,3

>

where ¥, is the thermal speed of electrons and InA is the
Coulomb logarithm, InA=In(Ap /by), where A, is the
Debye length and b, is the distance of closest approach
of two particles. If the effect of magnetic field is taken
into account, A; will be replaced by the gyroradius of the
electron in the Coulomb logarithm, when the latter is
significantly smaller than the former [2].
Thus the motion equation of the electrons is written as
dv, eV,XB
me~‘7t—=—yeimeve——c—+FC . (4)

This is the Langevin equation of electrons in the mag-
netic field. It is similar to that of Brownian particles.

In cylindrical coordinate, a static and homogeneous
magnetic field is assumed, B=B,e, +Bye,, and the sta-
tistical momentum tensor A is written as

Azz Azr A29
K = |4 Arr ArG

zr

Ap Ao Aoo
Thus the solutions of Eq. (4) are
V,=[C,(1)Q, + C,(£)Qy cos( Q)
+C4(1)Q,sin(Qp)]e "', (5)

V,=[—C,()Qsin(Q1)+ C;(¢)Q cos(Q1) Je Tl ©

Vo=[C,()Qy— C,(1)Q,cos( Q)
—Cy(0Qsin(Qn]e T, @)

where C,(t), C,(t), and C;(¢) are, respectively,
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1 ¢ Wik
C,(= e f_w(F,Q,Jngne)eY dg, (8)
C,()= Qzlm f_tw[(FzQQ—FQQZ)cos(Qé‘)

e

—F,Qsin(Qé)le " dE )

|

2 47ei!t_tl|
Qe

1 t
Ci(n)= (F,Qp—FyQ,)sin(QE)
3 ’m, f_w[ ) §
+F,Qcos(QE) e de . (10)
Here (F,,F,,F,) is the component of Fc,

Q,=—eBy/(m,c),Q,=—eB,/(m ), Q=(Q5+02)*.
Generally, Q>>v,,. From Egs. (1) and (5)-(10), we
get the correlation functions of V,(2) to zero order:

V,(OV,(t)= 2y (A, 02+ AgoQ3+24,,0,0,), (1
ei e
e“Ye,»|f—t'|
V,(t)V,(t')=4—F(AZZQ§+ AgoQ2i+ A4, 0°—24,,0,0,)cosQ(t —1t') , (12)
Y ei me
zewyei‘t—t'|
Vo(t)Vy(t') = 227 i (A,02+ AgQ3+24,,0,0,)
el e
_Veilt_tll
+Z——F(AZZQ§+ Ay + 4,97 —24,50,Q,)cosQt —1') . (13)
Y ei m,

The velocity distribution function of electrons is as-
sumed to be Maxwellian, so we have

Vi=VI=Vyo=1V]. (14)
The diffusion coefficient is given by [3]
o LT T
D= lim Tfo dE fo V(EW(ENE . (15)

We use Egs. (11)-(15) to obtain diffusion coefficients in
each direction:

Q2y?
= —, (16)
‘Q' 7/ei
V2
p=—talt (17
Vei+Q
_ ooV (18)
0_ .
szei

The results are similar to those calculated by classical
collisional theory [1].

In Brownian motion theory, diffusion of Brownian par-
ticles is only dependent on their dissipative processes in
the liquid; so is the diffusion of charged particles in a
magnetic field, as indicated by Egs. (17)—(19), though
diffusion will be restrained by the magnetic field. To see
this, let us assume that there exists another dissipative
channel of electrons (for instance, enhanced radiation,
etc.) locally apart from collisional dissipation in the plas-
ma. The region is denoted by D. The electrons in this re-
gion will endure an additional frictional force, which is
simply written as F; = —y,;V,; here y; represents ener-
gy dissipative rate of electrons. Adding this term in Eq.
(4), and assuming ¥; to be constant, it is easy to obtain

the diffusion coefficients of electrons in region D:

Qv?
=, (19)
Qy,+ve)
(Ve t W2
r:__l__le_tz_ , (20)
(Yeityp) +Q
Qiy?
Dy=—F—— . 21
Q(vutre)

The dissipative processes will enhance diffusion, though
the treatment above is very crude.

The diffusion coefficients of ions are obtained by a simi-
lar procedure:

VAL
Diz_?i?_ , (22)
iVie
42
D,.,=Ii;¥——’—2 , (23)
Vie T ;
QR
Diy=— . (24)
Qivie
Here
qB,
Q9= mc
1
Z mpc’

Q=04+l

V; is the ion’s thermal speed, and y,, is the ion-electron
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collisional frequency.

It is worthwhile to note that the effect of other parti-
cles on a binary collision has been treated as a white
noise, and the differential scattering cross section has not
been effected by the external field, which would not be
true for the existence of other dissipative mechanisms, or
fluctuations when the density of plasma is very high. A
more detailed consideration of this subject will be ex-
tremely valuable.

In conclusion, it has been shown that the motion of
charged particles in a magnetic field can be regarded as a
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stochastic process. With this approach, it would be con-
venient to discuss other behaviors of charged particles in
a magnetic field, particularly for the transport processes
when there exist other stochastic fields, for instance, a
stochastic magnetic field as discussed previously [4,5],
which we will present later.
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